摘要:每年考研數(shù)學(xué)必有一道證明題,分值在10分左右,其中百分之九十涉及到的是微分中值定理及其應(yīng)用。與此同時(shí),中值定理也是大部分考研學(xué)子難
作者
佚名
摘要:每年考研數(shù)學(xué)必有一道證明題,分值在10分左右,其中百分之九十涉及到的是微分中值定理及其應(yīng)用。與此同時(shí),中值定理也是大部分考研學(xué)子難以攻克的一環(huán),我們希望這篇文章能夠?qū)δ阌兴鶐椭?/p>
微分中值定理及其應(yīng)用最難的是三個(gè)微分中值定理:羅爾定理、拉格朗日中值定理、柯西中值定理。它們是考研數(shù)學(xué)的重難點(diǎn),現(xiàn)分別從涉及的知識(shí)點(diǎn)、考查方式、方法選擇、真題鏈接等四個(gè)方面進(jìn)行分析。
一、涉及的知識(shí)點(diǎn)及考查形式
可涉及微分中值定理及其應(yīng)用的知識(shí)點(diǎn)有,微分中值定理,洛必達(dá)法則,函數(shù)單調(diào)性的判別,函數(shù)的極值,函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線,函數(shù)圖形的描繪,函數(shù)的最大值與最小值,弧微分(數(shù)一、數(shù)二要求),曲率的概念(數(shù)一、數(shù)二要求),曲率圓與曲率半徑(數(shù)一、數(shù)二要求)。
微分中值定理以間接考查或與其他知識(shí)點(diǎn)綜合出題的比重很大,也可以直接出題,所以考查形式有多種。如利用導(dǎo)數(shù)的幾何意義考查函數(shù)的特性,討論導(dǎo)數(shù)零點(diǎn)存在性或方程根個(gè)數(shù)問題,不等式的證明,證明含中值的等式,求極限等。
二、方法選擇
題目考查微分中值定理,那么選擇哪一中值定理成為解題的關(guān)鍵。
針對(duì)題目的特點(diǎn),可根據(jù)如下情況選擇對(duì)應(yīng)的微分中值定理:如果結(jié)論不包含端點(diǎn),優(yōu)先考慮羅爾定理;如果結(jié)論中包含端點(diǎn),則考慮拉格朗日中值定理或柯西定理。那么選擇拉式還是柯西定理,需要對(duì)結(jié)論做進(jìn)一步的處理,化為定理的標(biāo)準(zhǔn)形式。如第一個(gè)標(biāo)準(zhǔn),左邊是只含端點(diǎn),右邊只含中值;第二個(gè)標(biāo)準(zhǔn),左邊進(jìn)一步處理,分子分母減號(hào),一側(cè)只含右端點(diǎn),一側(cè)只含左端點(diǎn)。整理后,如果分母是端點(diǎn)相減,則選擇拉格朗日定理;否則,選擇柯西定理。
三、求解步驟及歷年真題解析
涉及到微分中值定理,一般首先要找輔導(dǎo)函數(shù)。針對(duì)拉式中值定理和柯西定理,經(jīng)過對(duì)要證明的結(jié)論化為標(biāo)準(zhǔn)形式,可直接得出輔助函數(shù)。而羅爾定理,需要把結(jié)論化為微分方程的一般形式,使用積分因子法可找到。
有了輔助函數(shù),根據(jù)中值定理,列出定理對(duì)應(yīng)的三個(gè)條件,得出結(jié)論。
四、小結(jié)
三個(gè)微分中值定理(條件與結(jié)論)的理解及其區(qū)別是復(fù)習(xí)的要點(diǎn),而方法的選擇是解題的關(guān)鍵。三個(gè)微分中值定理(條件與結(jié)論)的理解及其區(qū)別理解透了,才能正確使用方法進(jìn)行求解。知識(shí)點(diǎn)的理解一定要結(jié)合一定量的習(xí)題才能真正掌握知識(shí)點(diǎn),并應(yīng)用于考研。
相關(guān)閱讀:
從15考研高等數(shù)學(xué)出發(fā),得出16高等數(shù)學(xué)復(fù)習(xí)規(guī)劃
2016考研數(shù)學(xué),輕松拿下交換積分次序問題
14、15兩次備考數(shù)學(xué)三 復(fù)習(xí)用書全盤點(diǎn)和使用感受
關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗(yàn)_考研幫"有15名研友在考研幫APP發(fā)表了觀點(diǎn)
掃我下載考研幫
最新資料下載
2021考研熱門話題進(jìn)入論壇
考研幫地方站更多
你可能會(huì)關(guān)心:
來考研幫提升效率